Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(2): 185, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253943

RESUMO

The world's urban population is growing rapidly, and threatening natural ecosystems, especially streams. Urbanization leads to stream alterations, increased peak flow frequencies, and reduced water quality due to pollutants, morphological changes, and biodiversity loss, known as the urban stream syndrome. However, a shift towards recognizing urban streams as valuable natural systems is occurring, emphasizing green infrastructure and nature-based solutions. This study in Uruguay examined water quality in various watersheds with different urbanization levels and socio-environmental characteristics along a precipitation gradient. Using Geographic Information Systems (GIS) and in situ data, we assessed physicochemical parameters, generated territorial variables, and identified key predictors of water quality. We found that urbanization, particularly urban areas, paved areas, and populations without sanitation, significantly influenced water quality parameters. These factors explained over 50% of the variation in water quality indicators. However, the relationship between urbanization and water quality was non-linear, with abrupt declines after specific urban intensity thresholds. Our results illustrate that ensuring sanitation networks and managing green areas effectively are essential for preserving urban stream water quality. This research underscores the importance of interdisciplinary teams and localized data for informed freshwater resource management.


Assuntos
Rios , Urbanização , Uruguai , Ecossistema , Saneamento , Qualidade da Água , Monitoramento Ambiental
2.
J Insect Physiol ; 151: 104573, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838284

RESUMO

A detailed understanding of how host fitness changes in response to variations in microbe density (an ecological measure of disease tolerance) is an important aim of infection biology. Here, we applied dose-response curves to study Aedes aegypti survival upon exposure to different microbes. We challenged female mosquitoes with Listeria monocytogenes, a model bacterial pathogen, Dengue 4 virus and Zika virus, two medically relevant arboviruses, to understand the distribution of mosquito survival following microbe exposure. By correlating microbe loads and host health, we found that a blood meal promotes disease tolerance in our systemic bacterial infection model and that mosquitoes orally infected with bacteria had an enhanced defensive capacity than insects infected through injection. We also showed that Aedes aegypti displays a higher survival profile following arbovirus infection when compared to bacterial infections. Here, we applied a framework for investigating microbe-induced mosquito mortality and details how the lifespan of Aedes aegypti varies with different inoculum sizes of bacteria and arboviruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Vírus da Dengue , Infecção por Zika virus , Zika virus , Feminino , Animais , Vírus da Dengue/fisiologia , Mosquitos Vetores/microbiologia , Zika virus/fisiologia , Bactérias
3.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994670

RESUMO

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biomassa , Rios/química , Biodiversidade
4.
Nat Ecol Evol ; 6(9): 1279-1289, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927315

RESUMO

Many studies have shown that biodiversity regulates multiple ecological functions that are needed to maintain the productivity of a variety of ecosystem types. What is unknown is how human activities may alter the 'multifunctionality' of ecosystems through both direct impacts on ecosystems and indirect effects mediated by the loss of multifaceted biodiversity. Using an extensive database of 72 lakes spanning four large Neotropical wetlands in Brazil, we demonstrate that species richness and functional diversity across multiple larger (fish and macrophytes) and smaller (microcrustaceans, rotifers, protists and phytoplankton) groups of aquatic organisms are positively associated with ecosystem multifunctionality. Whereas the positive association between smaller organisms and multifunctionality broke down with increasing human pressure, this positive relationship was maintained for larger organisms despite the increase in human pressure. Human pressure impacted multifunctionality both directly and indirectly through reducing species richness and functional diversity of multiple organismal groups. These findings provide further empirical evidence about the importance of aquatic biodiversity for maintaining wetland multifunctionality. Despite the key role of biodiversity, human pressure reduces the diversity of multiple groups of aquatic organisms, eroding their positive impacts on a suite of ecological functions that sustain wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Organismos Aquáticos , Biodiversidade , Brasil , Humanos
5.
J Anim Ecol ; 91(3): 551-565, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954827

RESUMO

Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12-year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.


Assuntos
Ecossistema , Lagos , Animais , Biomassa , Peixes , Fitoplâncton
6.
Biol Lett ; 17(6): 20210137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102072

RESUMO

Insect abundance and diversity are declining worldwide. Although recent research found freshwater insect populations to be increasing in some regions, there is a critical lack of data from tropical and subtropical regions. Here, we examine a 20-year monitoring dataset of freshwater insects from a subtropical floodplain comprising a diverse suite of rivers, shallow lakes, channels and backwaters. We found a pervasive decline in abundance of all major insect orders (Odonata, Ephemeroptera, Trichoptera, Megaloptera, Coleoptera, Hemiptera and Diptera) and families, regardless of their functional role or body size. Similarly, Chironomidae species richness decreased over the same time period. The main drivers of this pervasive insect decline were increased concurrent invasions of non-native insectivorous fish, water transparency and changes to water stoichiometry (i.e. N : P ratios) over time. All these drivers represent human impacts caused by reservoir construction. This work sheds light on the importance of long-term studies for a deeper understanding of human-induced impacts on aquatic insects. We highlight that extended anthropogenic impact monitoring and mitigation actions are pivotal in maintaining freshwater ecosystem integrity.


Assuntos
Ecossistema , Água , Animais , Biodiversidade , Água Doce , Humanos , Insetos , Rios
7.
Pest Manag Sci ; 77(4): 2019-2028, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33342024

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) is a Gram-positive bacterium that synthesizes specific protein toxins, which can be exploited for control of various insect pests, including Diatraea saccharalis, a lepidopteran that severely damages sugarcane crops. Although studies have described the effects of Bt in the larval phases of D. saccharalis, few have examined its effect on insect eggs. Herein, we studied the entomopathogenic potential of Bacillus thuringiensis serovar Aizawai GC-91 (Bta) during D. saccharalis embryo development with the aim of understanding the entomopathogenic mechanism and developing new biological control techniques for target insects. RESULTS: Bta concentrations of 5, 10 and 20 g L-1 demonstrated the strongest bioactivity, reducing D. saccharalis egg viability by 28.69%, 33.91% and 34.98%, respectively. The lethal concentrations (LCs) were estimated as: LC50 = 28.07 g L-1 (CI 95% = 1.89-2.38) and LC90 = 65.36 g L-1 (CI 95% = 4.19-5.26). Alterations in egg coloration, melanization and granule accumulation were observed at 24 h, persisting until 144 h. The embryo digestive systems were severely damaged, including narrowing of the intestinal lumen, vesiculations and degenerated cells, causing embryonic death. CONCLUSION: The toxicity caused by Bta in D. saccharalis embryos demonstrated its potential as a biological control agent and as a sustainable alternative for integrated management of D. saccharalis infestation. © 2020 Society of Chemical Industry.


Assuntos
Bacillaceae , Bacillales , Bacillus thuringiensis , Lepidópteros , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Larva , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA